

Nuove frontiere della ricerca:

terapia cellulare adottiva e terapia genica

Convegno Fondazione Dossetti, Roma 03/12/2012

Franco Locatelli, MD PhD

Università di Pavia

IRCCS, Ospedale Pediatrico Bambino Gesù Roma, Italy

f.locatelli@opbg.net

Increasing the complexity.....

Tlymphocyte

Gene Therapy

Connective tissue

PROPERTIES of MESENCHYMAL STEM CELLS (MSCs)

Multipotent cells

capable of differentiation into several mesenchymal lineages

- Enhancement of hematopoiesis
- Immunosuppressive properties
- Inhibit inflammation (paracrine signaling)
- Remarkable expansion after *ex vivo* culture, both with FCS and PLT lysate, with maintenance of genetic stability

Bernardo et al., Conn Tissue Res 2007 Bernardo et al., J Cell Phys 2007 Bernardo et al., Canc Res 2007

MSCs and immune response: it takes more than two to tango

Cytokines, chemokines, TLR ligands

Locatelli F et al. Haematologica, 2006

MORPHOLOGY, DIFFERENTIATION and PROLIFERATIVE CAPACITY of CROHN'S DISEASE MSCs

Bernardo et al. Cytotherapy 2009

IMMUNOPHENOTYPICAL CHARACTERIZATION of CD-MSCs

Percentages of HLA-DR expression on *ex-vivo* expanded CD-MSCs

Pt (<i>n</i> .)	P1	P2	P3	P4	P5	P6	
1	60	45	22	9	2	0	ND: not determined
2	30	30	4	2	ND	0	
3	20	10	5	0	0	0	
4	17	11	0	0	0	ND	
5	84	44	7	1	0	0	
6	12	0	0	0	ND	ND	
7	13	0	0	0	ND	0	

Bernardo et al. Cytotherapy 2009

CD-MSCs show biological characteristics similar to HD-MSCs and can be considered for approaches of anti-inflammatory/reparative cell therapy in patients with refractory CD.

PHASE I-II STUDY in CD PATIENTS: INTRAFISTULAR INJECTION of AUTOLOGOUS BM-MSCs

12 pts. enrolled to date; 10 pts. evaluable

intrafistular injection of MSCs every 4 weeks (median 4 infusions)

MONITORING: clinical, serological, imaging (magnetic resonance) and endoscopic (rectosigmoidoscopic examination, endoscopy)

PHASE I-II STUDY: INTRAFISTULAR INJECTION of MSCs

MSC intrafistular injection:

• safe; no adverse event up to 12 months after treatment.

- effective in inducing sustained closure of fistulas; appearance of regenerative tissue along the tracks
- 7 pts. (70%): complete and sustained healing of fistula tracks
- 3 pts. (30%): partial response

MSCs in IBD

Ciccocioppo R et al. Gut 2011

PT #10 with ACTIVE RECTAL CROHN'S DISEASE BEFORE and AFTER MSC TREATMENT

- (A) Active rectal disease at endoscopy before treatment.
- (B) After 12 months, healthy mucosa with ulcer epithelisation.
- (C) Complex perianal fistulas at MRI before treatment.
- (D) Replacement with regenerative tissue 6 months after the end of treatment.

CDAI / PDAI VALUES BEFORE and AFTER TREATMENT

r p<0.001

CDAI / PDAI values at 1st, 2nd, 3rd MSC infusion and after 6 month follow-up

Ciccocioppo R et al. Gut 2011

Neuroblastoma

• Age

- 90% < 5 y/o; 50% < 2 y/o</p>
- Occasional USG detection in utero
- Location: any neural crest tissue
 - Adrenal
 - Paraspinal sympathetic tissue
 - Cervical, Thoracic, Pelvic
- Often metastatic at diagnosis
 - Bone and/or bone marrow
 - > 1 y/o: 70%
- GD2 disialogangloside is highly expressed on NBL cells

Chimeric Antigen Receptor (CAR)-transduced T cells

Pulle M, Dotti G, Savoldo B et al. Nature Medicine 2008

EU Definitions

Courtesy of Prof. A. Aiuti

The regulatory framework for cell therapybased ATMP

Directive 2001/83/EC

Community code relating to all medicinal products for human use Requirements with a view to MA Regulation 726/2004 Centralized procedure via EMA

ATMP Regulation 1394/2007

Based on human Cells or tissues

Directive 2004/23/EC

standards of quality and safety for the donation ,procurement, testing, human tissues and cells Directive 2006/17/EC

technical requirements for the donation, procurement and testing

Directive 2006/86/EC

technical requirements for traceability requirements, notification of SA-reactions and events

Device requirements

Directive 93/42/EEC

concerning medical devices

Directive 90/385/EEC

relating to active implantable medical devices

Patient-/Bio-safety tests

Sterility

- Identity of the cell product
- Functional features
- Vitality and cell number
- Phenotype of the cell product
- Differentiation capacity
- Genetic stability
- Medium in which the cells are grown

Requirements for globin vector expression

- Lineage-restricted, erythroid-specific
- Differentiation stage-specific
- Elevated

- therapeutic (anemia)
- safe (1-2 vector copies per cell)
- Sustained over time

Targeting gene expression to late-stage erythropoiesis

TNS9.3.55 is lineage restricted, erythroid specific, differentiation stage specific

Objective 1

Transduce patient CD34+ cells in 0.5-2.0 VCN range (Upper limit of 2.0 is mandated by FDA)

Lentiviral vector

Patient cell expansion - Wave bio

Patient cell transduction

Patient cell selection

Objective 2

Improving the titer and manufacturing of TNS9.3

(without altering the globin transcription unit)

Large Scale Lentiviral Production Flow Chart

10 to 25 liter

50-150 ml

Preclinical issues in cell therapy

Animal models

- Species specificity on a molecular, cellular and tissue level
- Animal model suitable & predictive of safety
- Homologous model/disease model (<u>efficacy/proof of concept</u>)
- Non-homologous model (immunocompromised?) to test human products
- Biologically relevant animal model available (concomitant treatment immunogenicity, delivery) ?
- Large animal model necessary?

Biodistribution

Tumorigenicity & chromosomal stability

Courtesy of Prof. A. Aiuti

Now, this is not the end. It is not even the beginning of the end, but it is, perhaps, the end of the beginning......

